High-rate deposition of microcrystalline silicon in a large-area PECVD reactor and integration in tandem solar cells
نویسندگان
چکیده
We study the high-rate deposition of microcrystalline silicon in a large-area plasma-enhanced chemical-vapor-deposition (PECVD) reactor operated at 40.68MHz, in the little-explored process conditions of high-pressure and high-silane concentration and depletion. Due to the long gas residence time in this process, the silane gas is efficiently depleted using moderate feed-in power density, thus facilitating up-scaling of the process to large surfaces. As observed in more traditional deposition processes, the deposition rate and performance of device-quality material are limited by the inter-electrode gap of the reactor. We significantly increase the cell performances by reducing this gap. X-ray diffractometry (XRD) and secondary ion mass spectroscopy (SIMS) are used to characterize the microcrystalline material deposited in the modified reactor at a rate of 1 nm/s. Comparison with a microcrystalline process at a low deposition rate demonstrates that the crystallographic orientation of the absorbing layer of the cell and the concentrations of contaminants are strongly correlated and dependent on the process. We use microcrystalline cells with absorber layer grown at a rate of 1 nm/s integrated as bottom cells in amorphous-microcrystalline (micromorph) tandem solar cells using the superstrate configuration. We report an initial efficiency of 10.8% (9.6% stabilized) for a tandem cell with 1.2 cm surface. Copyright # 2010 John Wiley & Sons, Ltd.
منابع مشابه
Micromorph Cells Grown at High Rate with In-situ Intermediate Reflector in Industrial Kai Pecvd Reactors
We report on results of tandem amorphous/microcrystalline (a-Si:H/μc-Si:H) silicon solar cells developed in commercial Oerlikon Solar KAI PECVD reactors, at an excitation frequency of 40.68 MHz. The cell structure consists of a stack of glass/front contact/pin a-Si:H/intermediate reflector/pin μc-Si:H/back contact. LPCVD (low-pressure chemical vapor deposition) ZnO (zinc oxide) is applied as fr...
متن کاملIntermittent Very High Frequency Plasma Deposition on Microcrystalline Silicon Solar Cells Enabling High Conversion Efficiency
Stopping the plasma-enhanced chemical vapor deposition (PECVD) once and maintaining the film in a vacuum for 30 s were performed. This was done several times during the formation of a film of i-layer microcrystalline silicon (μc-Si:H) used in thin-film silicon tandem solar cells. This process aimed to reduce defect regions which occur due to collision with neighboring grains as the film becomes...
متن کاملFast Growth of Microcrystalline Silicon Solar Cells on Lp-cvd Zno in Industrial Kai Pecvd Reactors
We report in this paper on the latest research results of microcrystalline (μc-Si:H) silicon solar cells fabricated in a commercial Oerlikon Solar (former UNAXIS) KAI-S single-chamber PECVD reactor (substrate size up to 35 cm x 45 cm) driven at an excitation frequency of 40.68 MHz. The cell structure consists of a stack of glass/ front-TCO / p-i-n μc-Si:H solar cell / back-contact. Our “in-hous...
متن کامل21% Efficiency Silicon Heterojunction Solar Cells Produced with Very High Frequency Pecvd
Silicon heterojunction solar cells have high opencircuit voltages thanks to excellent passivation of the wafer surfaces by thin intrinsic amorphous silicon (aSi:H) layers deposited by plasma-enhanced chemical vapor deposition (PECVD). By using in-situ plasma diagnostics and ex-situ film characterization, we show that the best a-Si:H films for passivation are produced from deposition regimes clo...
متن کاملFlexcellence : towards Roll-to-roll Mass-production of Low Cost Thin Film Silicon Solar Cells
We report on the “mid-term” results obtained in the frame of the European FLEXCELLENCE project (www.unine.ch/flex). FLEXCELLENCE aims at developing the equipment and the processes for cost-effective roll-to-roll production of high-efficiency thin-film modules, based on amorphous (a-Si:H) and microcrystalline silicon (μc-Si:H). Eight partners, with extended experience in complementary fields ran...
متن کامل